3.479 \(\int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx\)

Optimal. Leaf size=125 \[ \frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}+\frac {(A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {(A-3 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d} \]

[Out]

(A-B)*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a+a*sec(d*x+c))-(A-3*B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*E
llipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a/d+(A-B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/
cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a/d

________________________________________________________________________________________

Rubi [A]  time = 0.25, antiderivative size = 125, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {2960, 4020, 3787, 3771, 2639, 2641} \[ \frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}+\frac {(A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {(A-3 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x])/((a + a*Cos[c + d*x])*Sqrt[Sec[c + d*x]]),x]

[Out]

-(((A - 3*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*d)) + ((A - B)*Sqrt[Cos[c + d
*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*d) + ((A - B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(d*(a + a
*Sec[c + d*x]))

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2960

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Csc[e + f*x])^(p - m - n)*(b + a*Csc[e + f*x])^m*(
d + c*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] && I
ntegerQ[m] && IntegerQ[n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 4020

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> -Simp[((A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(b*f*(2
*m + 1)), x] - Dist[1/(a^2*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[b*B*n - a*A*(2
*m + n + 1) + (A*b - a*B)*(m + n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*
b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx &=\int \frac {B+A \sec (c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))} \, dx\\ &=\frac {(A-B) \sqrt {\sec (c+d x)} \sin (c+d x)}{d (a+a \sec (c+d x))}+\frac {\int \frac {-\frac {1}{2} a (A-3 B)+\frac {1}{2} a (A-B) \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx}{a^2}\\ &=\frac {(A-B) \sqrt {\sec (c+d x)} \sin (c+d x)}{d (a+a \sec (c+d x))}-\frac {(A-3 B) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{2 a}+\frac {(A-B) \int \sqrt {\sec (c+d x)} \, dx}{2 a}\\ &=\frac {(A-B) \sqrt {\sec (c+d x)} \sin (c+d x)}{d (a+a \sec (c+d x))}-\frac {\left ((A-3 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{2 a}+\frac {\left ((A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{2 a}\\ &=-\frac {(A-3 B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}+\frac {(A-B) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}+\frac {(A-B) \sqrt {\sec (c+d x)} \sin (c+d x)}{d (a+a \sec (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 2.59, size = 422, normalized size = 3.38 \[ \frac {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \left (\frac {6 \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \sec \left (\frac {1}{2} (c+d x)\right ) \left ((A-2 B) \cos \left (\frac {1}{2} (c-d x)\right )-B \cos \left (\frac {1}{2} (3 c+d x)\right )\right )}{\sqrt {\sec (c+d x)}}+2 \sqrt {2} A \csc (c) e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \left (\left (-1+e^{2 i c}\right ) e^{2 i d x} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-e^{2 i (c+d x)}\right )-3 \sqrt {1+e^{2 i (c+d x)}}\right )+12 A \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )-6 \sqrt {2} B \csc (c) e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \left (\left (-1+e^{2 i c}\right ) e^{2 i d x} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-e^{2 i (c+d x)}\right )-3 \sqrt {1+e^{2 i (c+d x)}}\right )-12 B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )\right )}{6 a d (\cos (c+d x)+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[c + d*x])/((a + a*Cos[c + d*x])*Sqrt[Sec[c + d*x]]),x]

[Out]

(Cos[(c + d*x)/2]^2*((2*Sqrt[2]*A*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))
]*Csc[c]*(-3*Sqrt[1 + E^((2*I)*(c + d*x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/2, 3/4, 7/4,
 -E^((2*I)*(c + d*x))]))/E^(I*d*x) - (6*Sqrt[2]*B*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^(
(2*I)*(c + d*x))]*Csc[c]*(-3*Sqrt[1 + E^((2*I)*(c + d*x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F
1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))]))/E^(I*d*x) + (6*((A - 2*B)*Cos[(c - d*x)/2] - B*Cos[(3*c + d*x)/2])*Cs
c[c/2]*Sec[c/2]*Sec[(c + d*x)/2])/Sqrt[Sec[c + d*x]] + 12*A*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[
Sec[c + d*x]] - 12*B*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]]))/(6*a*d*(1 + Cos[c + d*x
]))

________________________________________________________________________________________

fricas [F]  time = 1.09, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {\sec \left (d x + c\right )}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {\sec \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

maple [A]  time = 1.48, size = 244, normalized size = 1.95 \[ -\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (A \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+A \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-B \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 B \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )+\left (2 A -2 B \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-A +B \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}{a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/sec(d*x+c)^(1/2),x)

[Out]

-((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(cos(1/2*d*x+1/2*c)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*
(sin(1/2*d*x+1/2*c)^2)^(1/2)*(A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-
B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*B*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+(2*A-2*B)*sin(1/2*d*x+1/2*c
)^4+(-A+B)*sin(1/2*d*x+1/2*c)^2)/a/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin
(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {\sec \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {A+B\,\cos \left (c+d\,x\right )}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\left (a+a\,\cos \left (c+d\,x\right )\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*cos(c + d*x))/((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))),x)

[Out]

int((A + B*cos(c + d*x))/((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {A}{\cos {\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}} + \sqrt {\sec {\left (c + d x \right )}}}\, dx + \int \frac {B \cos {\left (c + d x \right )}}{\cos {\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}} + \sqrt {\sec {\left (c + d x \right )}}}\, dx}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/sec(d*x+c)**(1/2),x)

[Out]

(Integral(A/(cos(c + d*x)*sqrt(sec(c + d*x)) + sqrt(sec(c + d*x))), x) + Integral(B*cos(c + d*x)/(cos(c + d*x)
*sqrt(sec(c + d*x)) + sqrt(sec(c + d*x))), x))/a

________________________________________________________________________________________